Gap Junction Channels of Innexins and Connexins: Relations and Computational Perspectives

Author:

Sánchez AlejandroORCID,Castro CarlosORCID,Flores Dora-LuzORCID,Gutiérrez EverardoORCID,Baldi Pierre

Abstract

Gap junction (GJ) channels in invertebrates have been used to understand cell-to-cell communication in vertebrates. GJs are a common form of intercellular communication channels which connect the cytoplasm of adjacent cells. Dysregulation and structural alteration of the gap junction-mediated communication have been proven to be associated with a myriad of symptoms and tissue-specific pathologies. Animal models relying on the invertebrate nervous system have exposed a relationship between GJs and the formation of electrical synapses during embryogenesis and adulthood. The modulation of GJs as a therapeutic and clinical tool may eventually provide an alternative for treating tissue formation-related diseases and cell propagation. This review concerns the similarities between Hirudo medicinalis innexins and human connexins from nucleotide and protein sequence level perspectives. It also sets forth evidence of computational techniques applied to the study of proteins, sequences, and molecular dynamics. Furthermore, we propose machine learning techniques as a method that could be used to study protein structure, gap junction inhibition, metabolism, and drug development.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3