Abstract
(1) Phosphorus (P) removal has proven difficult in decentralized wastewater treatment systems, and external filters installed with a highly P sorbent material have been proposed to improve the P removal. In particular, calcium (Ca) rich materials have shown promising results. (2) Eight materials (five calcareous materials, one quartz sand, and two Sol–Gel coated calcareous materials) were tested in columns fed with P-spiked tap water for two years. The experiment was operated under four periods with increased P concentration from 3.3 to 21.5 mg P L−1, and with increased surface loading rate from 18 to 227 mm d−1. After termination, the element content was measured in four column height fractions. (3) Initially, all columns removed P effectively and the calcareous materials (CAT, CAT A, and CAT C) maintained an effective removal until termination, while increases in effluent P concentration were detected already after 7 weeks for SAN and after 80–90 weeks for OPO, PHO, CAL, and HYG. The highest P content for materials were measured for the bottom fraction closest to the inlet distribution. For most materials, we observed a good agreement between the maximum sorption capacity (Qmax) and the P content in the bottom fraction; however, a discrepancy was observed for CAL, CAT A, and CAT C. (4) In conclusion, the calcareous materials provided a consistent P removal for all 24 months. Additionally, the Sol–Gel coating had a minimal effect on the P removal capacity contrary to previous findings in batch experiments for the coated materials.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献