Differences in Root Endophytic Bacterial Communities of Chinese Cork Oak (Quercus variabilis) Seedlings in Different Growth Years

Author:

Sha Weilai1,Hong Die1,Che Yuying1,Xue Yafei1,Kong Yong1,Yi Xianfeng1ORCID,Zhou Jing1ORCID,Yu Guohong2,Liu Baoxuan3

Affiliation:

1. School of Life Sciences, Qufu Normal University, Jining 273165, China

2. Institute of Dry Farming, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Crop Drought Tolerance Research of Hebei Province, Hengshui 053000, China

3. Jining Forestry Protection and Development Service Center, Jining 272000, China

Abstract

In forests, seedling renewal is influenced by many environmental factors, including climate change, seed size, wildfires, and ecological factors. It is unclear how different growth years of seedlings affect Chinese cork oak (Quercus variabilis) root endophyte communities. In this study, we took a holistic approach, using Illumina sequencing, to study the composition and function of bacterial communities associated with root microorganisms in four Q. variabilis seedlings after 1, 2, and 3 years of growth. The bacterial alpha diversity indexes were highest in the second year and lowest in the third year, and age was the decisive factor for the differences found in the root endophytic bacterial communities. Total phosphorus had the greatest effect on bacterial communities. The abundance of beneficial bacteria Streptomyces (8.69%) and Novosphingobium (4.22%) was highest in the second-year samples, and their abundance decreased by 7.96% and 3.61% in the third year, respectively. Higher levels of plant disease inhibition and metabolism (23.80%) were in the roots of second-year Q. variabilis seedlings. The metabolic abundance of carbohydrate was 3.66% lower in the first year and 3.95% lower in the third year compared to the second year. Our results suggest that the structure and function of bacterial communities changed with increasing growth years.

Funder

National Natural Science Foundation of China

Basic Research Funds of Hebei Academy of Agriculture and Forestry Sciences

Publisher

MDPI AG

Subject

Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3