Energy Consumption Optimization for the Formation of Multiple Robotic Fishes Using Particle Swarm Optimization

Author:

Xu Dong,Yu Luo,Lv Zhiyu,Zhang Jiahuang,Fan Di,Dai WeiORCID

Abstract

The traditional leader-follower formation algorithm can realize the formation of multiply robotic fishes, but fails to consider the energy consumption during the formation. In this paper, the energy optimized leader-follower formation algorithm has been investigated to solve this problem. Considering that the acceleration of robotic fish is tightly linked to the motion state and energy consumption, we optimize the corresponding control parameters of the acceleration to reduce energy consumption during the formation via particle swarm algorithm. The whole process has been presented as follows: firstly we realize the formation on the base of the kinematic model with leader-follower formation algorithm; then the energy consumption on the base of dynamical model are derived; finally we seek the optimal control parameters based on the particle swarm optimization (PSO) algorithm. The dynamics simulation of the energy optimization scheme is conducted to verify the functionality of the proposed energy optimized leader-follower formation algorithm via MATLAB. The optimized results demonstrate that the proposed approach, reducing energy consumption during the formation, is superior to the traditional leader-follower formation algorithm and can reduce energy consumption during the formation. The novelty of the work is that we can reduce the energy consumption during the process of formation by considering the energy consumption, which is a gap in the current research field.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3