Efficient and Privacy-Preserving Data Aggregation and Dynamic Billing in Smart Grid Metering Networks

Author:

Braeken An,Kumar Pardeep,Martin AndrewORCID

Abstract

The smart grid enables convenient data collection between smart meters and operation centers via data concentrators. However, it presents security and privacy issues for the customer. For instance, a malicious data concentrator cannot only use consumption data for malicious purposes but also can reveal life patterns of the customers. Recently, several methods in different groups (e.g., secure data aggregation, etc.) have been proposed to collect the consumption usage in a privacy-preserving manner. Nevertheless, most of the schemes either introduce computational complexities in data aggregation or fail to support privacy-preserving billing against the internal adversaries (e.g., malicious data concentrators). In this paper, we propose an efficient and privacy-preserving data aggregation scheme that supports dynamic billing and provides security against internal adversaries in the smart grid. The proposed scheme actively includes the customer in the registration process, leading to end-to-end secure data aggregation, together with accurate and dynamic billing offering privacy protection. Compared with the related work, the scheme provides a balanced trade-off between security and efficacy (i.e., low communication and computation overhead while providing robust security).

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Compression of electrical code violation recognition data using the improved swinging door trending algorithm;Applied Mathematics and Nonlinear Sciences;2024-01-01

2. Privacy-Preserving Data Aggregation with Dynamic Billing in Fog-Based Smart Grid;Applied Sciences;2023-01-05

3. A blockchain-based framework for privacy-preserving and verifiable billing in smart grid;Peer-to-Peer Networking and Applications;2022-09-26

4. Privacy-Preserving approaches for smart metering: A survey;2022 Asia Conference on Electrical, Power and Computer Engineering (EPCE 2022);2022-04-22

5. A Review of Security Concerns in Smart Grid;Innovative Data Communication Technologies and Application;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3