Detecting the Turning Points of Grassland Autumn Phenology on the Qinghai-Tibetan Plateau: Spatial Heterogeneity and Controls

Author:

Yang YanzhengORCID,Qi Ning,Zhao Jun,Meng Nan,Lu Zijian,Wang Xuezhi,Kang Le,Wang Boheng,Li Ruonan,Ma JinfengORCID,Zheng Hua

Abstract

Autumn phenology, commonly represented by the end of season (EOS), is considered to be the most sensitive and crucial productivity indicator of alpine and cold grassland in the Qinghai-Tibetan Plateau. Previous studies typically assumed that the rates of EOS changes remain unchanged over long time periods. However, pixel-scale analysis indicates the existence of turning points and differing EOS change rates before and after these points. The spatial heterogeneity and controls of these turning points remain unclear. In this study, the EOS turning point changes are extracted and their controls are explored by integrating long time-series remote sensing images and piecewise regression methods. The results indicate that the EOS changed over time with a delay rate of 0.08 days/year during 1982–2015. The rates of change are not consistent over different time periods, which clearly highlights the existence of turning points. The results show that temperature contributed most strongly to the EOS changes, followed by precipitation and insolation. Furthermore, the turning points of climate, human activities (e.g., grazing, economic development), and their intersections are found to jointly control the EOS turning points. This study is the first quantitative investigation into the spatial heterogeneity and controls of the EOS turning points on the Qinghai-Tibetan Plateau, and provides important insight into the growth mechanism of alpine and cold grassland.

Funder

The Second Qinghai-Tibetan Plateau Scientific Expedition and Research

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3