Prediction of Erosion-Prone Areas in the Catchments of Big Lowland Rivers: Implementation of Maximum Entropy Modelling—Using the Example of the Lower Vistula River (Poland)

Author:

Brzezińska MartaORCID,Szatten DawidORCID,Babiński Zygmunt

Abstract

It is common knowledge that erosion depends on environmental factors modified by human activity. Erosion within a catchment area can be defined by local lithological, morphometric, hydrological features, etc., and land cover, with spatial distribution described by means of remote sensing tools. The study relied on spatial data for the catchment of the Lower Vistula—the biggest river in Poland. GIS (SAGA, QGIS) tools were used to designate the spatial distribution of independent environmental variables that determined the process of erosion according to land cover types within the Lower Vistula catchment (Corine Land Cover). In addition, soil loss in the catchment area was calculated using the USLE model (Universal Soil Loss Equation). The spatial data was used to determine the predictive power of variables for the process of erosion by applying the maximum entropy model (MaxEnt) commonly used in fields of science unrelated to fluvial hydrology. The results of the study pointed directly to environmental features strongly connected with the process of erosion, identifying areas susceptible to intensified erosion, and in addition positively verified by USLE. This testifies to the correct selection of the proposed method, which is a strong point of the presented study. The proposed interdisciplinary approach to predict erosion within the catchment area (MaxEnt), widely supported by GIS tools, will allow the identification of environmental pressures to support the decision-making process in erosion-prone areas.

Funder

Project Supporting Maintenance of Research Potential of the Institute of Geography at Kazimierz Wielki University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3