Study on the Effects of Irrigation Quotas and Amendments on Salinized Soil and Maize Growth

Author:

Chen Liang1,Yue Shaoli1,Sun Lifeng1,Gao Ming2,Wang Rui2

Affiliation:

1. Ningxia Agricultural Comprehensive Development Center, Yinchuan 750002, China

2. College of Agriculture, Ningxia University, Yinchuan 750021, China

Abstract

Salt damage affects crop yields and wastes limited water resources. Implementing water-saving and salt-controlling strategies along with amendments can enhance crop productivity and support the development of salinized soils towards. In this study, we used “Jia Liang 0987” maize as the test material, and a two-factor split block design was executed to investigate the effects of synergistic management of irrigation volume (W1: 360 mm, W2: 450 mm, and W3: 540 mm) and amendments (T1: microbial agent 816.33 kg·hm−2, T2: humic acid 6122.45 kg·hm−2, T3: microsilica powder 612.25 kg·hm−2) on water, salt and soil indices, and growth characteristics. The combination of 450 mm of irrigation with humic acid (W2T2) or with microsilica powder (W2T3) significantly lowered the groundwater level by 0.24 m and 0.19 m, respectively. The soil mineralization was significantly reduced by 2.60 g/L and 1.75 g/L with W2T2 and 540 mm of irrigation combined with humic acid (W3T2), respectively. The soil moisture content increased with depth and over time, showing the greatest improvement with W2T2. This combination also showed optimal results for pH and total salt, organic matter, available phosphorus, quick-acting potassium, Cl−, and SO42− contents. W2T2 and W3T2 improved soil field capacity and HCO3− contents, and significantly increased total nitrogen and phosphorus content, improving the soil nutrient grade. W2T2 showed the greatest maize plant height (323.67 cm) and stem thickness (21.54 mm for diameter), enhancing above-ground dry biomass (72,985.49 kg·hm−2) and grain yield (14,646.57 kg·hm−2). Implementing water-saving and salt-controlling strategies with amendments effectively improved soil fertility and crop yield in salinized soils, and the amendments factor played a major role. In saline–alkali soils in the northwest of China, 450 mm of irrigation combined with humic acid is especially helpful for enhancing soil fertility and maize productivity.

Funder

Ningxia Agricultural Core Technology Research Project of 2023

National Key Research and Development Program of China

Ningxia Science and Technology Leading Talent Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3