Application of Tesla Valve’s Obstruction Characteristics to Reverse Fluid in Fish Migration

Author:

Zeng GuoruiORCID,Xu MaosenORCID,Mou Jiegang,Hua Chenchen,Fan Chuanhao

Abstract

More and more activities have caused significant damage to the river environment, among which a typical problem of blocked fish migration is constantly attracting people’s attention. Nowadays, fishways are essential hydraulic facilities to solve such problems. Although a different fishway has a particular blocking effect on the water flow, the flow velocity of the vital positions of fish migration in the fishway could still be relatively high locally, which may pose a certain challenge to the fish migration (the higher flow velocity could lead to the increase in migratory energy consumption of fish). Therefore, further exploration of fish passing facilities may be required. As a check valve without movable parts, the Tesla valve is expected to be used in fish passing facilities because of its substantial obstruction to the reverse flow of internal fluid. This paper conducted numerical simulation experiments on the fish passage pipeline designed based on Tesla valves using the RNG (renormalization group) k-ε model. Grass carp were selected as the primary analysis object, and the simulation results were analyzed from the perspective of turbulence characteristics. The results showed that the fish passage pipeline based on the T45-R Tesla valve was better than that on the GMF (Gamboa, Morris and Forster) Tesla valve in velocity control. The velocity at the vital position of T45-R internal fluid was about 20% lower than that of GMF. The results of the velocity cloud diagram showed apparent high-velocity and low-velocity areas in the fish passage pipeline designed based on the T45-R Tesla valve. The high-velocity area was the vital position for fish upstream, and the maximum velocity variation range in this area was 0.904~1.478 m/s. At the same time, the flow in the low-velocity area is almost static water. The analysis illustrated that the resulting velocity environment could provide conditions for grass carp to move upstream successfully. The results of turbulent kinetic energy inside the fish passage pipeline showed that the maximum value of turbulent kinetic energy was only about 0.043 m2/s2, which could be friendly for fish upstream. In addition, the results show that pressure-related problems could not seem to have an excessive impact on fish migration, such as causing damage. Overall, the results further studied the feasibility of using the Tesla valve as a fish passage pipeline.

Funder

National Natural Science Foundation of China

Zhejiang Province Public Welfare Technology Application Research Project

Zhejiang Post-Doctoral Preferential Fund Project

Zhejiang Provincial Education Department Special Project for Professional Degree Postgraduates

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3