Abstract
The subject matter of this research is Kant’s apriorism underlying Hilbert’s formalism in the philosophical grounding of mathematics as a self-sufficing system. The research aim is the invention of such a logically formalized axiomatic epistemology system, in which it is possible to construct formal deductive inferences of formulae—modeling the formalism ideal of Hilbert—from the assumption of Kant’s apriorism in relation to mathematical knowledge. The research method is hypothetical–deductive (axiomatic). The research results and their scientific novelty are based on a logically formalized axiomatic system of epistemology called Σ + C, constructed here for the first time. In comparison with the already published formal epistemology systems Ξ and Σ, some of the axiom schemes here are generalized in Σ + C, and a new symbol is included in the object-language alphabet of Σ + C, namely, the symbol representing the perfection modality, C: “it is consistent that…”. The meaning of this modality is defined by the system of axiom schemes of Σ + C. A deductive proof of the consistency of Σ + C is submitted. For the first time, by means of Σ + C, it is deductively demonstrated that, from the conjunction of Σ + C and either the first or second version of Gödel’s theorem of incompleteness of a formal arithmetic system, the formal arithmetic investigated by Gödel is a representation of an empirical knowledge system. Thus, Kant’s view of mathematics as a self-sufficient, pure, a priori knowledge system is falsified.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference40 articles.
1. The Critique of Pure Reason. Fundamental Principles of the Metaphysics of Morals. The Critique of Practical Reason. Preface and Introduction to the Metaphysical Elements of Ethics. General Introduction to the Metaphysics of Morals. The Science of Right. The Critique of Judgement;Kant,1994
2. Truth, Proof and Gödelian Arguments: A Defense of Tarskian Truth in Mathematics. Philosophical Studies from the University of Helsinki 23;Pantsar,2009
3. Truth at a world is a modality
4. Truth as Modality;Woleński,2016
5. Provability logic;Artemov,2004
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献