Abstract
A graph G for which γR(G)=2γ(G) is the Roman graph, and if γRwc(G)=2γwc(G), then G is the weakly connected Roman graph. In this paper, we show that the decision problem of whether a bipartite graph is Roman is a co-NP-hard problem. Next, we prove similar results for weakly connected Roman graphs. We also study Roman trees improving the result of M.A. Henning’s A characterization of Roman trees, Discuss. Math. Graph Theory 22 (2002). Moreover, we give a characterization of weakly connected Roman trees.
Funder
Universidad Nacional Autónoma de México
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)