On the Connection between the GEP Performances and the Time Series Properties

Author:

Bărbulescu AlinaORCID,Dumitriu Cristian Ștefan

Abstract

Artificial intelligence (AI) methods are interesting alternatives to classical approaches for modeling financial time series since they relax the assumptions imposed on the data generating process by the parametric models and do not impose any constraint on the model’s functional form. Even if many studies employed these techniques for modeling financial time series, the connection of the models’ performances with the statistical characteristics of the data series has not yet been investigated. Therefore, this research aims to study the performances of Gene Expression Programming (GEP) for modeling monthly and weekly financial series that present trend and/or seasonality and after the removal of each component. It is shown that series normality and homoskedasticity do not influence the models’ quality. The trend removal increases the models’ performance, whereas the seasonality elimination results in diminishing the goodness of fit. Comparisons with ARIMA models built are also provided.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference50 articles.

1. Directional forecasts of GDP and inflation: a joint evaluation with an application to Federal Reserve predictions

2. Time Series Forecasting for Dynamic Environments: The DyFor Genetic Program Model

3. Time Series Analysis: Forecasting and Control;Box,1970

4. On the forecasting of high‐frequency financial time series based on ARIMA model improved by deep learning

5. The Comparison among ARIMA and hybrid ARIMA-GARCH Models in Forecasting the Exchange Rate of Iran;Pahlavani;Int. J. Bus. Dev. Stud.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3