Alternative Artificial Neural Network Structures for Turbulent Flow Velocity Field Prediction

Author:

Portal-Porras KoldoORCID,Fernandez-Gamiz UnaiORCID,Ugarte-Anero AinaraORCID,Zulueta Ekaitz,Zulueta Asier

Abstract

Turbulence in fluids has been a popular research topic for many years due to its influence on a wide range of applications. Computational Fluid Dynamics (CFD) tools are able to provide plenty of information about this phenomenon, but their computational cost often makes the use of these tools unfeasible. For that reason, in recent years, turbulence modelling using Artificial Neural Networks (ANNs) is becoming increasingly popular. These networks typically calculate directly the desired magnitude, having input information about the computational domain. In this paper, a Convolutional Neural Network (CNN) for predicting different magnitudes of turbulent flows around different geometries by approximating the equations of the Reynolds-Averaged Navier-Stokes (RANS)-based realizable k-ε two-layer turbulence model is proposed. Using that CNN, alternative network structures are proposed to predict the velocity fields of a turbulent flow around different geometries on a rectangular channel, with a preliminary stage to predict pressure and vorticity fields before calculating the velocity fields, and the obtained results are compared with the ones obtained with the basic structure. The results demonstrate that the proposed structures clearly outperform the basic one, especially when the flow becomes uncertain. In addition, considering the results, the best network configuration is proposed. That network is tested with a domain with multiple geometries and a domain with a narrowing of the channel, which are domains with different conditions from the training ones, showing fairly accurate predictions.

Funder

Ekonomiaren Garapen eta Lehiakortasun Saila, Eusko Jaurlaritza

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3