Deep Reinforcement Learning Algorithm Based on Fusion Optimization for Fuel Cell Gas Supply System Control

Author:

Yuan Hongyan1ORCID,Sun Zhendong1ORCID,Wang Yujie1ORCID,Chen Zonghai1ORCID

Affiliation:

1. Department of Automation, University of Science and Technology of China, Hefei 230027, China

Abstract

In a proton exchange membrane fuel cell (PEMFC) system, the flow of air and hydrogen is the main factor affecting the output characteristics of the PEMFC, and there is a coordination problem in the flow control of both. To ensure real-time gas supply in the fuel cell and improve the output power and economic benefits of the system, a deep reinforcement learning controller with continuous state based on fusion optimization (FO-DDPG) and a control optimization strategy based on net power optimization are proposed in this paper, and the effects of whether the two gas controls are decoupled or not are compared. The experimental results show that the undecoupled FO-DDPG algorithm has a faster dynamic response and more stable static performance compared to the fuzzy PID, DQN, traditional DRL algorithm, and decoupled controllers, demonstrated by a dynamic response time of 0.15 s, an overshoot of less than 5%, and a steady-state error of 0.00003.

Publisher

MDPI AG

Subject

Automotive Engineering

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3