Design of Unsignalized Roundabouts Driving Policy of Autonomous Vehicles Using Deep Reinforcement Learning

Author:

Wang Zengrong1,Liu Xujin1,Wu Zhifei1

Affiliation:

1. School of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China

Abstract

Driving at an unsignalized roundabout is a complex traffic scenario that requires both traffic safety and efficiency. At the unsignalized roundabout, the driving policy does not simply maintain a safe distance for all vehicles. Instead, it pays more attention to vehicles that potentially have conflicts with the ego-vehicle, while guessing the intentions of other obstacle vehicles. In this paper, a driving policy based on the Soft actor-critic (SAC) algorithm combined with interval prediction and self-attention mechanism is proposed to achieve safe driving of ego-vehicle at unsignalized roundabouts. The objective of this work is to simulate a roundabout scenario and train the proposed algorithm in a low-dimensional environment, and then test and validate the policy in the CARLA simulator to ensure safety while reducing costs. By using a self-attention network and interval prediction algorithms to enable ego-vehicle to focus on more temporal and spatial features, the risk of driving into and out of the roundabout is predicted, and safe and effective driving decisions are made. Simulation results show that our proposed driving policy can provide collision risk avoidance and improve vehicle driving safety, resulting in a 15% reduction in collisions. Finally, the trained model is transferred to the complete vehicle system of CARLA to validate the possibility of real-world deployment of the policy model.

Funder

2021 Shanxi Province Key R&D Program (intelligent field) sub-topics

Research Project Supported by Shanxi Scholarship Council of China

Natural Science Foundation of Shanxi Province

Publisher

MDPI AG

Subject

Automotive Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3