The Methoxylated, Highly Conjugated C40 Carotenoids, Spirilloxanthin and Anhydrorhodovibrin, Can Be Separated Using High Performance Liquid Chromatography with Safe and Environmentally Friendly Solvents

Author:

Autenrieth Caroline,Ghosh RobinORCID

Abstract

High performance liquid chromatography (HPLC) is a frequently used technique in carotenoid research. So far, however, little attention has been paid to the fact that many of the organic solvents used in HPLC separation of highly apolar C40 carotenoids impose a significant threat to both health (especially for women) and the general laboratory environment. Here, we developed a solvent combination capable of allowing high-resolution HPLC separation of the C40 carotenoid, spirilloxanthin, and all of its biosynthetic precursors beginning with phytoene, using relatively safe, environmentally friendly solvents. We show that separation of spirilloxanthin and its precursors anhydrorhodovibrin and lycopene using modern ultra-high performance chromatography (UHPLC) poses particular problems for apolar carotenoid separation, due to the long residence times in the sample delivery system, which facilitates carotenoid aggregation. We resolved these problems by developing the solvent delivery combination acetone/acetonitrile/isopropanol/methanol (65/30/5/2 (v/v/v/v)), which allows excellent column separation using the safe isocratic solvent system methanol/tetrahydrofuran (98/2 (v/v)). We also demonstrate that the development strategy for optimizing a solvent system for carotenoid separation can be well-described by the use of the average dielectric constant of the total sample delivery solvent, and present a formal method for analysis of the efficiency of separation.

Funder

Bundesministerium für Bildung und Forschung

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3