An Online Calibration Method for a Galvanometric System Based on Wavelet Kernel ELM

Author:

Zhang Wugang,Guo Wei,Zhang Chuanwei,Zhao ShuanfengORCID

Abstract

The online calibration method of a two-dimensional (2D) galvanometer requires both high precision and better real-time performance to meet the needs of moving target position measurement, which presents some challenges for traditional calibration methods. In this paper, a new online calibration method is proposed using the wavelet kernel extreme learning machine (KELM). Firstly, a system structure is created and its experiment setup is established. The online calibration method is then analyzed based on a wavelet KELM algorithm. Finally, the acquisition methods of the training data are set, two groups of testing data sets are presented, and the verification method is described. The calibration effects of the existing methods and wavelet KELM methods are compared in terms of both accuracy and speed. The results show that, for the two testing data sets, the root mean square errors (RMSE) of the Mexican Hat wavelet KELM are reduced by 16.4% and 38.6%, respectively, which are smaller than that of the original ELM, and the standard deviations (Sd) are reduced by 19.2% and 36.6%, respectively, indicating the proposed method has better generalization and noise suppression performance for the nonlinear samples of the 2D galvanometer. Although the online operation time of KELM is longer than ELM, due to the complexity of the wavelet kernel, it still has better real-time performance.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3