Abstract
This study presented a finite element model of radial tire–asphalt pavement interaction using ABAQUS 6.14 software to investigate the skid resistance properties of asphalt pavement under partial tire aquaplane conditions. Firstly, the pavement profile datum acquired by laser scanning were imported to Finite Element Analysis (FEA) software to conduct the pavement modeling. Secondly, a steady state rolling analysis of a tire on three types of asphalt pavements under drying conditions was carried out. Variation laws of the friction coefficient of the radial tire on different pavements with different pavement textures, tire pressures, and loads on the tire were examined. Subsequently, calculation results of the steady state rolling analysis were transmitted to dynamic explicit analysis, and an aquaplane model of a radial tire on asphalt pavements was built by inputting the flow Euler grids. The tire–pavement adhesive characteristics under partial aquaplane conditions are discussed regarding the aquaplane model. Influences of the thickness of water film, the texture of asphalt pavement, and the rolling speed of the tire on the vertical pavement-tire contact force are analyzed. It is found that the vertical contact force between open graded friction course (OGFC) pavement and tire is the highest, followed by stone mastic asphalt (SMA) pavement and dense graded asphalt concrete (AC) pavement surface. The vertical contact force between tire and pavement will be greatly reduced, even with increasing speed or water film thickness. As tire speed increases from 70 km/h to 130 km/h, the tire–pavement contact force is reduced by about 25%. Moreover, when the thickness of water film increases from 0 (dry condition) to 4 mm and then to 12 mm, the vertical contact force reduced 50% and 15%, respectively, compared with under the dry contact condition. This study provided a key theoretical reference for safe driving on wet pavements.
Funder
Open Fund of Key Laboratory of Road Structure and Material of Transport Ministry, Chang’an University, the Fundamental Research Funds for the Central Universities, CHD
China Postdoctoral Science Foundation
Shaanxi Province Postdoctoral Science Foundation
National Natural Science Foundation of China
Subject
General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献