Diamond Composites Produced from Fluorinated Mixtures of Micron-Sized and Nanodiamonds by Metal Infiltration

Author:

Khabashesku Valery N.ORCID,Filonenko Vladimir P.,Bagramov Rustem K.ORCID,Zibrov Igor P.

Abstract

Improving the operating performance of superhard composites is an important and urgent task, due to a continuing industrial need. In this work, diamond composites with high wear resistance were obtained by sintering fluorinated mixtures of micron-sized diamonds with nanodiamonds at high pressures and temperatures (7–8 GPa, 1550–1700 °C). Aluminum and cobalt powders were added to the diamond mixture to activate the process. The external infiltration of nickel into the diamond layer was carried out additionally during the sintering process, and the effects of nickel infiltration on the structure and properties of composites were studied. The metal melt ensured the mass transfer of carbon within a volume, and the formation of a strong diamond framework. The composition of the additives was selected in such a way that the binding phase became ultimately composed of the intermetallic AlNixCo1−x(x ≤ 1). The Young’s modulus of composites synthesized in this way had a value of 850 GPa, and their wear resistance when turning white granite was more than twice as high as that of premium commercial PDC. The obtained results thus demonstrate that by using nickel to increase melt infiltration into diamond-based composites, the mechanical properties of Al/Co/fluorinated diamond compositions, studied previously, can be further improved.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3