Numerical Analysis of Transient Pressure Damping in Viscoelastic Pipes at Different Water Temperatures

Author:

Sun Qiang,Zhang Zhilin,Wu Yuebin,Xu Ying,Liang Huan

Abstract

Water temperature affects the peak pressure damping of transient flows in viscoelastic pipes. Owing to the viscoelastic properties of pipes, the accuracy of peak pressure damping simulations hinges on both viscoelastic and frictional factors. In simulations, the influence of both factors on peak pressure damping at different water temperatures is unclear. In this study, the Kelvin–Voigt model with both a quasi-steady friction model and modified Brunone model was employed. Based on experimental data, the accuracy of simulated peak pressure damping was verified at four different water temperatures (13.8, 25, 31, and 38.5 °C). From the perspective of energy transfer and dissipation, the influence of viscoelastic and frictional factors on peak pressure damping were clarified, and the applicability of different friction models was determined based on the contributions of viscoelastic and frictional factors to peak pressure damping. The numerical results indicate that the viscoelastic properties of pipes have a greater impact on peak pressure damping than their frictional properties at 25, 31, and 38.5 °C. Higher temperatures result in a delay in the rate of work and a decrease in the frequency of work performed by viscoelastic pipes. Viscoelastic properties play a more important role than frictional ones in calculating peak pressure damping as the water temperature increases. In addition, the one-dimensional quasi-steady friction model can accurately simulate peak pressure damping within a specified water temperature range.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Young Innovative Talents Support Program of Harbin University of Commerce

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3