Rapid Prediction of Mechanical Properties Based on the Chemical Components of Windmill Palm Fiber

Author:

Guan Liyuan,Huang Qiuzi,Wang Xiaoju,Qi NingORCID,Wang Mingxing,Wang Guohe,Wang ZhongORCID

Abstract

During spinning, the chemical component content of natural fibers has a great influence on the mechanical properties. How to rapidly and accurately measure these properties has become the focus of the industry. In this work, a grey model (GM) for rapid and accurate prediction of the mechanical properties of windmill palm fiber (WPF) was established to explore the effect of chemical component content on the Young’s modulus. The chemical component content of cellulose, hemicellulose, and lignin in WPF was studied using near-infrared (NIR) spectroscopy, and an NIR prediction model was established, with the measured chemical values as the control. The value of RC and RCV were more than 0.9, while the values of RMSEC and RMSEP were less than 1, which reflected the excellent accuracy of the NIR model. External validation and a two-tailed t-test were used to evaluate the accuracy of the NIR model prediction results. The GM(1,4) model of WPF chemical components and the Young’s modulus was established. The model indicated that the increase in cellulose and lignin content could promote the increase in the Young’s modulus, while the increase in hemicellulose content inhibited it. The establishment of the two models provides a theoretical basis for evaluating whether WPF can be used in spinning, which is convenient for the selection of spinning fibers in practical application.

Funder

National Natural Science Foundation of China under grant

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3