Portevin-Le Chatelier Characterization of Quenched Al-Mg Alloy Sheet with Different Mg Concentrations

Author:

Tian Ni,Wang Wenze,Feng Zhen,Song Weihao,Wang Tianshi,Zeng Zijie,Zhao Gang,Qin Gaowu

Abstract

In the present study, the PLC characteristic parameters and DSA mechanism of Al-(2.86~9.41) Mg alloy sheets were investigated during tensile testing at room temperature with a tensile rate of 1 × 10−3 s−1. On the basis of the solution Mg concentrations in the α-Al matrix, the initial vacancy concentration, the second-phase particle configuration and the recrystallized grain configuration are almost the same by quenching treatment. The results show that the type of room-temperature tensile stress–strain curves of quenched Al-(2.86~9.41) Mg alloy sheets varied according to the Mg content. The type of stress–strain curve of the Al-2.86 Mg alloy sheet was B + C, while the type of stress–strain curve of the Al-(4.23~9.41) Mg alloy sheets was C. When the quenched Al-(2.86~9.41) Mg alloy sheets were stretched at room temperature, the strain cycle of the rectangular waves corresponding to the high stress flow ΔεTmax and stress drop amplitude Δσ on the zigzag stress–strain curve of alloy sheets increased with increasing the Mg content. Moreover, the strain cycle of ΔεTmax and Δσ on the stress–strain curve of alloy sheets increased gradually with increasing tensile deformation. The yield stress of quenched Al-(2.86~9.41) Mg alloy sheets increased gradually with increasing the Mg content. Moreover, the critical strain corresponding to yield stress εσ and the critical strain corresponding to the occurrence of the PLC shearing band εc of alloy sheets both increased with increasing the Mg content. However, the difference in flow strain value Δεc−σ between εc and εσ of alloy sheets decreased gradually with increasing the Mg content.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities of China

Liaoning Natural Science Foundation Project of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3