An Efficient Cross-Modal Privacy-Preserving Image–Text Retrieval Scheme

Author:

Zhang Kejun12,Xu Shaofei1ORCID,Song Yutuo2,Xu Yuwei3,Li Pengcheng2,Yang Xiang1,Zou Bing1,Wang Wenbin1

Affiliation:

1. Beijing Electronic Science and Technology Institute, Beijing 100070, China

2. School of Computer Science and Technology, Xidian University, Xi’an 710071, China

3. School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China

Abstract

Preserving the privacy of the ever-increasing multimedia data on the cloud while providing accurate and fast retrieval services has become a hot topic in information security. However, existing relevant schemes still have significant room for improvement in accuracy and speed. Therefore, this paper proposes a privacy-preserving image–text retrieval scheme called PITR. To enhance model performance with minimal parameter training, we freeze all parameters of a multimodal pre-trained model and incorporate trainable modules along with either a general adapter or a specialized adapter, which are used to enhance the model’s ability to perform zero-shot image classification and cross-modal retrieval in general or specialized datasets, respectively. To preserve the privacy of outsourced data on the cloud and the privacy of the user’s retrieval process, we employ asymmetric scalar-product-preserving encryption technology suitable for inner product calculation, and we employ distributed index storage technology and construct a two-level security model. We construct a hierarchical index structure to speed up query matching among massive high-dimensional index vectors. Experimental results demonstrate that our scheme can provide users with secure, accurate, fast cross-modal retrieval service while preserving data privacy.

Funder

Fundamental Research Funds for the Central Universities

Network Security Team Construction 2024

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3