The Pedal Curves Generated by Alternative Frame Vectors and Their Smarandache Curves

Author:

Canlı Davut1ORCID,Şenyurt Süleyman1ORCID,Ertem Kaya Filiz2ORCID,Grilli Luca3ORCID

Affiliation:

1. Department of Mathematics, Ordu University, 52200 Ordu, Türkiye

2. Department of Mathematics, Niğde Ömer Halisdemir University, 51240 Niğde, Türkiye

3. Department of Economics, Management and Territory, University of Foggia, 71121 Foggia, Italy

Abstract

In this paper, pedal-like curves are defined resulting from the orthogonal projection of a fixed point on the alternative frame vectors of a given regular curve. For each pedal curve, the Frenet vectors, the curvature and the torsion functions are found to provide the common relations among the main curve and its pedal curves. Then, Smarandache curves are defined by using the alternative frame vectors of each pedal curve as position vectors. The relations of the Frenet apparatus are also established for the pedal curves and their corresponding Smarandache curves. Finally, the expressions of the alternative frame apparatus of each Smarandache curves are given in terms of the alternative frame elements of the pedal curves. Thus, a set of new symmetric curves are introduced that contribute to the vast curve family.

Publisher

MDPI AG

Reference17 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3