Seismic Vulnerability Analysis of Concrete-Filled Steel Tube Tied Arch Bridges Using Symmetrically Arranged High-Damping Rubber Bearings

Author:

Zhang Qingxi1,Wang Xiangyang1ORCID,Huang Jiangshuai1

Affiliation:

1. School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China

Abstract

High-damping rubber bearings play an essential role in isolated bridges. They can prolong the natural vibration period of a bridge and reduce its seismic response. In order to quantitatively study the isolation performance of high-damping rubber bearings, this paper investigates a concrete-filled steel tube-tied arch bridge as the research object and uses symmetrically arranged high-damping rubber bearings for isolation reconstruction. Nonlinear finite element analysis models for isolated and non-isolated bridges are built based on the structural properties of the actual bridge. Based on the structural deformation failure criterion, a bridge damage evaluation index system is established, the damage index of each component is defined, and a quantitative analysis of different damage states is carried out. Based on the incremental dynamic analysis method, the seismic vulnerability curves of bridge components and systems are established. By comparing the seismic vulnerability curves of the bridge before and after isolation, the isolation effect of the high-damping rubber bearings is quantitatively evaluated. The results of the analysis show that the high-damping rubber bearings have a significant isolation effect on the bridge structure and the effect is symmetrically distributed along the longitudinal symmetry plane of the bridge. After adopting the isolation measures, the exceedance probability of damage of each component of the bridge is reduced to varying degrees. Among them, the isolation effect on piers and arch ribs is the most significant, up to more than 90%. At the same time, the exceedance probability of damage of the bearing itself is less reduced. This result is also consistent with the original intention of the design of the isolation bearing; that is, through the energy dissipation of the isolation bearing, the seismic response of other components of the bridge is reduced.

Publisher

MDPI AG

Reference30 articles.

1. Hu, S. (2018). Study on Seismic Vulnerability and Seismic Strengthening Strategy of Bridges Considering Chloride Ion Erosion. [Ph.D. Thesis, Hunan University].

2. Derivation of vulnerability functions for European-type RC structures based on observational data;Rossetto;Eng. Struct.,2003

3. Statistical analysis of vulnerability curves;Shinozuka;J. Eng. Mech.,2000

4. Padgett, J.E. (2007). Seismic Vulnerability Assessment of Retrofitted Bridges Using Probabilistic Methods. [Ph.D. Thesis, Georgia Institute of Technology].

5. Seismic vulnerability of typical bridges in moderate seismic zones;Choi;Eng. Struct.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3