Multi-Task Multi-Objective Evolutionary Search Based on Deep Reinforcement Learning for Multi-Objective Vehicle Routing Problems with Time Windows

Author:

Deng Jianjun1,Wang Junjie2,Wang Xiaojun2,Cai Yiqiao2,Liu Peizhong3ORCID

Affiliation:

1. Chengdu Aeronautic Polytechnic, Chengdu 610100, China

2. College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China

3. College of Engineering, Huaqiao University, Quanzhou 362000, China

Abstract

The vehicle routing problem with time windows (VRPTW) is a widely studied combinatorial optimization problem in supply chains and logistics within the last decade. Recent research has explored the potential of deep reinforcement learning (DRL) as a promising solution for the VRPTW. However, the challenge of addressing the VRPTW with many conflicting objectives (MOVRPTW) still remains for DRL. The MOVRPTW considers five conflicting objectives simultaneously: minimizing the number of vehicles required, the total travel distance, the travel time of the longest route, the total waiting time for early arrivals, and the total delay time for late arrivals. To tackle the MOVRPTW, this study introduces the MTMO/DRP-AT, a multi-task multi-objective evolutionary search algorithm, by making full use of both DRL and the multitasking mechanism. In the MTMO/DRL-AT, a two-objective MOVRPTW is constructed as an assisted task, with the objectives being to minimize the total travel distance and the travel time of the longest route. Both the main task and the assisted task are simultaneously solved in a multitasking scenario. Each task is decomposed into scalar optimization subproblems, which are then solved by an attention model trained using DRL. The outputs of these trained models serve as the initial solutions for the MTMO/DRL-AT. Subsequently, the proposed algorithm incorporates knowledge transfer and multiple local search operators to further enhance the quality of these promising solutions. The simulation results on real-world benchmarks highlight the superior performance of the MTMO/DRL-AT compared to several other algorithms in solving the MOVRPTW.

Funder

Natural Science Foundation of Fujian Province of China

Fujian Provincial Science and Technology Major Project

Quanzhou Science and Technology Major Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3