A Novel Design for Joint Collaborative NOMA Transmission with a Two–Hop Multi–Path UE Aggregation Mechanism

Author:

Zhao Xinqi1,Chen Hua-Min1ORCID,Lin Shaofu1ORCID,Li Hui1ORCID,Chen Tao2

Affiliation:

1. School of Information Science and Technology, Beijing University of Technology, Beijing 100124, China

2. MediaTek (Beijing), Beijing 100015, China

Abstract

With the exponential growth of devices, particularly Internet of things (IoT) devices, connecting to wireless networks, existing networks face significant challenges. Spectral efficiency is crucial for uplink, which is the dominant form of asymmetrical network in today’s communication landscape, in large-scale connectivity scenarios. In this paper, an uplink transmission scenario is considered and user equipment (UE) aggregation is employed, wherein some users act as cooperative nodes (CNs), and help to forward received data from other users requiring coverage extension, reliability improvement, and data–rate enhancement. Non–orthogonal multiple access (NOMA) technology is introduced to improve spectral efficiency. To reduce the interference impact to guarantee the data rate, one UE can be assisted by multiple CNs, and these CNs and corresponding assisted UEs are clustered into joint transmission pairs (JTPs). Interference-free transmission can be achieved within each JTP by utilizing different successive interference cancellation (SIC) decoding orders. To explore SIC gains and maximize data rates in NOMA–based UE aggregation, we propose a primary user CN–based channel–sorting algorithm for JTP construction and apply a whale optimization algorithm for JTP power allocation. Additionally, a conflict graph is established among feasible JTPs, and a greedy strategy is employed to find the maximum weighted independent set (MWIS) of the conflict graph for subchannel allocation. Simulation results demonstrate that our joint collaborative NOMA (JC–NOMA) design with two–hop multi–path UE aggregation significantly improves spectral efficiency and capacity under limited spectral resources.

Funder

BJUT Project

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3