MFC-RMA (Matrix Factorization and Constraints- Role Mining Algorithm): An Optimized Role Mining Algorithm

Author:

Zhu Fubao1,Yang Chenguang1,Zhu Liang1ORCID,Zuo Hongqiang2,Gu Jingzhong12

Affiliation:

1. College of Computer Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450000, China

2. Shangu Cyber Security Technology Co., Ltd., Zhengzhou 450000, China

Abstract

Role-based access control (RBAC) is a widely adopted access control model in various domains for defining security management. Role mining is closely related to role-based access control, as the latter employs role assignments to offer a flexible and scalable approach to managing permissions within an organization. The edge role mining problem (Edge RMP), a variant of the role mining problem (RMP), has long been recognized as an effective strategy for role assignment. Role mining, which groups users with similar access permissions into the same role, bears some resemblance to symmetry. Symmetry categorizes objects or graphics with identical characteristics into one group. Both involve a certain form of “classification” or “induction”. Edge-RMP reduces the associations between users and permissions, thereby lowering the security risks faced by the system. While an algorithm based on Boolean matrix factorization exists for this problem, it fails to further refine the resulting user–role assignment (UA) and role–permission assignment (PA) relationships. Additionally, this algorithm does not address constraint-related issues, such as cardinality constraints, user exclusion constraints, and user capabilities. Furthermore, it demonstrates significant redundancy of roles when handling large datasets, leaving room for further optimization of Edge-RMP results. To address these concerns, this paper proposes the MFC-RMA algorithm based on Boolean matrix factorization. The method achieves significant optimization of Edge-RMP results by handling relationships between roles possessing various permissions. Furthermore, this paper clusters, compresses, modifies, and optimizes the original data based on the similarity between users, ensuring its usability for role mining. Both theoretical and practical considerations are taken into account for different types of constraints, and algorithms are devised to reallocate roles incorporating these constraints, thereby generating UA and PA matrices. The proposed approach yields optimal numbers of generated roles and the sum of the minimum number of generated edges to address the aforementioned issues. Experimental results demonstrate that the algorithm reduces management overhead, provides efficient execution results, and ensures the accuracy of generated roles.

Funder

National Natural Science Foundation of China

the Key Research and Development Special Project of Henan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3