UDR-GS: Enhancing Underwater Dynamic Scene Reconstruction with Depth Regularization

Author:

Du Yu12ORCID,Zhang Zhisheng1,Zhang Peng3,Sun Fuchun2,Lv Xiao1

Affiliation:

1. School of Electronic Engineering, Naval University of Engineering, Wuhan 430033, China

2. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

3. College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China

Abstract

Representing and rendering dynamic underwater scenes present significant challenges due to the medium’s inherent properties, which result in image blurring and information ambiguity. To overcome these challenges and accomplish real-time rendering of dynamic underwater environments while maintaining efficient training and storage, we propose Underwater Dynamic Scene Reconstruction Gaussian Splatting (UDR-GS), a method based on Gaussian Splatting. By leveraging prior information from a pre-trained depth estimation model and smoothness constraints between adjacent images, our approach uses the estimated depth as a geometric prior to aid in color-based optimization, significantly reducing artifacts and improving geometric accuracy. By integrating depth guidance into the Gaussian Splatting (GS) optimization process, we achieve more precise geometric estimations. To ensure higher stability, smoothness constraints are applied between adjacent images, maintaining consistent depth for neighboring 3D points in the absence of boundary conditions. The symmetry concept is inherently applied in our method by maintaining uniform depth and color information across multiple viewpoints, which enhances the reconstruction quality and visual coherence. Using 4D Gaussian Splatting (4DGS) as a baseline, our strategy demonstrates superior performance in both RGB novel view synthesis and 3D geometric reconstruction. On average, across multiple datasets, our method shows an improvement of approximately 1.41% in PSNR and a 0.75% increase in SSIM compared with the baseline 4DGS method, significantly enhancing the visual quality and geometric fidelity of dynamic underwater scenes.

Funder

Research Foundation of National University of Defense Technology

Publisher

MDPI AG

Reference58 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3