Hierarchical Hypervapotron Structure Integrated with Microchannels for Advancement of Thermohydraulic Performance

Author:

Meng Xin1,Cheng Kai1,Zhao Qi1,Chen Xuemei1

Affiliation:

1. MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Abstract

The hypervapotron structure was considered to be a feasible configuration to meet the high heat-dissipating requirement of divertors in nuclear fusion devices. In this work, symmetric CuCrZr-based transverse microchannels (TMHC) and longitudinal microchannels (LMHC) with an integrated hypervapotron channel were proposed and manufactured, and subcooled flow boiling experiments were conducted using deionized water at an inlet temperature of 20 °C with a traditional flat-type hypervapotron channel (FHC) for comparison. The LMHC and TMHC obtained lower wall temperatures than the FHC for all conditions, and the TMHC yielded the lowest temperatures. The heat transfer coefficients of the LMHC and TMHC outperformed the FHC due to the enlarged heat transfer area, and the TMHC had the greatest heat transfer coefficient (maximumly increased by 132% compared to the FHC) because the transverse-arranged microchannels were conductive, promoting the convection and liquid replenishment ability by introducing branch flow between fins; however, the microchannels of the LMHC were insensible to flow velocities due to the block effect of longitudinal microchannels. The LMHC obtained the largest pressure drop, and the pressure drop for the FHC and TMHC were comparable since the transverse-placed microchannels had little effect on frictional pressure loss. The TMHC attained the greatest comprehensive thermohydraulic performance which might bring significant insight to the structural design of hypervapotron devices.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3