ATLAS Muon Spectrometer Upgrade for the HL-LHC Era’s Challenges

Author:

Gazis Evangelos N.12

Affiliation:

1. Physics Department, Zografou Campus, National Technical University of Athens, 15780 Athens, Greece

2. Accelerator Department, Institute of Accelerating Systems and Applications, 30 Panepistimiou Avenue, 10679 Athens, Greece

Abstract

The High-Luminosity Large Hadron Collider (HL-LHC) project aims to improve the performance of the LHC by increasing the proton–proton collision luminosity. New physics discoveries will be possible starting in 2027. The HL-LHC aims to improve the integrated luminosity by a factor of 10 concerning the current running LHC’s design value. The HL-LHC project foresees delivering proton–proton collisions at 14 TeV CM (Center of Mass) energy providing the integrated luminosity to a value of 3 ab−1 for the ATLAS and CMS experiments, 50 fb−1 for LHCb, and 5 fb−1 for ALICE. The increased integrated luminosity for the above LHC experiments will provide the potential to discover rare processes while improving these measurements’ signal-to-noise (S/N) ratio statistics. The ATLAS muon spectrometer has been upgraded to face the challenges of the luminosity at the HL-LHC run. The new sub-detectors are as follows: The New Small Wheel (NSW) has replaced the Cathode Strip Chambers (CSC) discs at the internal part of the ATLAS end cups. The new integrated small Monitored Drift Chambers (sMDT) with the Resistive Plate Chambers (RPC) are installed at the outer end of the ATLAS BI (Barrel Inner) layer, in the barrel–endcap transition region, at 1.0 < |η| < 1.3, where η is the pseudo-rapidity (pseudo-rapidity η is a commonly used spatial coordinate describing the angle of a particle relative to the beam axis, defined as η=−lntanθ2, where θ is the angle between the vector momentum p→ and the positive direction of the beam axis). The NSW is an innovative technological achievement, including the MicroMegas (MM) gas detectors in large areas and small-strip Thin Gap Chambers (sTGC), enabling high pT (high pT is the high value of the particles’ transverse momentum versus the beam collision axis) trigger and muon detection. The muon reconstruction, the background rate, other spectrometer parameters, and the NSW performance are also presented.

Funder

ATLAS Collaboration

National Technical University of Athens

Institute of Accelerating Systems and Applications

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3