Abstract
DNA double-strand breaks (DSBs) are known to be the most serious lesions in irradiated cells. Several protein pathways exist for repair. The mechanisms by which cells determine a specific pathway for repair remain poorly understood. DSB induction and repair can be spatiotemporally monitored by ionizing radiation-induced foci (IRIFs) and the formation of repair complexes. IRIF analyses revealed that DSB formation, repair and misrepair are strongly dependent on the radiation characteristics and the microarchitecture of the chromatin environment. However, the IRIF nano-architecture remains unknown, as does its impact on the decision-making process and follow-up protein recruitment. New insights into the relationship between the physical properties of radiation, environmental chromatin architecture, IRIF architecture and DSB repair mechanisms are presented using single-molecule localization microscopy. Ripley distance statistics and persistent homology calculations have shifted our ability to analyze chromatin and IRIF architectures from imaging to topology and structure calculations. We discuss these approaches for cancer treatment-relevant irradiation processes on selected cell systems and consider whether this “structuromics” can enhance our knowledge about the radiation response.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献