Thermodynamic Constraints on the Non-Baryonic Dark Matter Gas Composing Galactic Halos

Author:

Hofmeister Anne M.

Abstract

To explain rotation curves of spiral galaxies through Newtonian orbital models, massive halos of non-baryonic dark matter (NBDM) are commonly invoked. The postulated properties are that NBDM interacts gravitationally with baryonic matter, yet negligibly interacts with photons. Since halos are large, low-density gaseous bodies, their postulated attributes can be tested against classical thermodynamics and the kinetic theory of gas. Macroscopic models are appropriate because these make few assumptions. NBDM–NBDM collisions must be elastic to avoid the generation of light, but this does not permit halo gas temperature to evolve. If no such collisions exist, then the impossible limit of absolute zero would be attainable since the other available energy source, radiation, does not provide energy to NBDM. The alternative possibility, an undefined temperature, is also inconsistent with basic thermodynamic principles. However, a definable temperature could be attained via collisions with baryons in the intergalactic medium since these deliver kinetic energy to NBDM. In this case, light would be produced since some proportion of baryon collisions are inelastic, thereby rendering the halo detectable. Collisions with baryons are unavoidable, even if NBDM particles are essentially point masses. Note that <0.0001 × the size of a proton is needed to avoid scattering with γ-rays, the shortest wavelength used to study halos. If only elastic collisions exist, NBDM gas would collapse to a tiny, dense volume (zero volume for point masses) during a disturbance—e.g., cosmic rays. NBDM gas should occupy central galactic regions, not halos, since self-gravitating objects are density stratified. In summary, properties of NBDM halos as postulated would result in violations of thermodynamic laws and in a universe unlike that observed.

Publisher

MDPI AG

Subject

Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3