Recent Progress in Modeling the Macro- and Micro-Physics of Radio Jet Feedback in Galaxy Clusters

Author:

Bourne Martin A.12ORCID,Yang Hsiang-Yi Karen345ORCID

Affiliation:

1. Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

2. Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

3. Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan

4. Center for Informatics and Computation in Astronomy, National Tsing Hua University, Hsinchu 30013, Taiwan

5. Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan

Abstract

Radio jets and the lobes they inflate are common in cool-core clusters and are known to play a critical role in regulating the heating and cooling of the intracluster medium (ICM). This is an inherently multi-scale problem, and much effort has been made to understand the processes governing the inflation of lobes and their impact on the cluster, as well as the impact of the environment on the jet–ICM interaction, on both macro- and microphysical scales. The developments of new numerical techniques and improving computational resources have seen simulations of jet feedback in galaxy clusters become ever more sophisticated. This ranges from modeling ICM plasma physics processes such as the effects of magnetic fields, cosmic rays, and viscosity to including jet feedback in cosmologically evolved cluster environments in which the ICM thermal and dynamic properties are shaped by large-scale structure formation. In this review, we discuss the progress made over the last ∼decade in capturing both the macro- and microphysical processes in numerical simulations, highlighting both the current state of the field, as well as the open questions and potential ways in which these questions can be addressed in the future.

Funder

Science and Technology Facilities Council

National Science and Technology Council (NSTC) of Taiwan

Yushan Scholar Program of the Ministry of Education (MoE) of Taiwan

Publisher

MDPI AG

Subject

Astronomy and Astrophysics

Reference444 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3