Determining Evolution of Cosmological Constant, Gravitational Constant and Speed of Light Using Nonadiabatic Cosmological Model and LLR Findings

Author:

Gupta

Abstract

We have shown that the Hubble constant H0 embodies the information about the evolutionary nature of the cosmological constant Λ, gravitational constant G, and the speed of light c. We have derived expressions for the time evolution of G/c2 (≡K) and dark energy density εΛ related to Λ by explicitly incorporating the nonadiabatic nature of the universe in the Friedmann equation. We have found (dK/dt)/K = 1.8H0 and, for redshift z, εΛ,z/εΛ,0 = 0.4+0.61+z-1.52. Since the two expressions are related, we believe that the time variation of K (and therefore that of G and c) is manifested as dark energy in cosmological models. When we include the null finding of the lunar laser ranging (LLR) for (dG/dt)/G and relax the constraint that c is constant in LLR measurements, we get (dG/dt)/G = 5.4H0 and (dc/dt)/c = 1.8H0. Further, when we adapt the standard ΛCDM model for the z dependency of εΛ rather than it being a constant, we obtain surprisingly good results fitting the SNe Ia redshift z vs distance modulus µ data. An even more significant finding is that the new ΛCDM model, when parameterized with low redshift data set (z < 0.5), yields a significantly better fit to the data sets at high redshifts (z > 0.5) than the standard ΛCDM model. Thus, the new model may be considered robust and reliable enough for predicting distances of radiation emitting extragalactic redshift sources for which luminosity distance measurement may be difficult, unreliable, or no longer possible.

Publisher

MDPI AG

Subject

Astronomy and Astrophysics

Reference38 articles.

1. An experiment to search for dark-matter interactions using sodium iodide detectors

2. First model independent results from DAMA/LIBRA-phase2;Bernabei;arXiv,2018

3. A unifying theory of dark energy and dark matter: Negative masses and matter creation within a modified ΛCDM framework

4. Eine neue Erweiterung der Relativistätstheorie;Weyl;Annalen der Physik,1919

5. New Pathways in Science;Eddington,1934

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3