The Train Wreck Cluster Abell 520 and the Bullet Cluster 1E0657-558 in a Generalized Theory of Gravitation

Author:

Israel Norman,Moffat John

Abstract

A major hurdle for modified gravity theories is to explain the dynamics of galaxy clusters. A case is made for a generalized gravitational theory called Scalar-Tensor-Vector-Gravity (STVG) or MOG (Modified Gravity) to explain merging cluster dynamics. The paper presents the results of a re-analysis of the Bullet Cluster, as well as an analysis of the Train Wreck Cluster in the weak gravitational field limit without dark matter. The King- β model is used to fit the X-ray data of both clusters, and the κ -maps are computed using the parameters of this fit. The amount of galaxies in the clusters is estimated by subtracting the predicted κ -map from the κ -map data. The estimate for the Bullet Cluster is that 14.1 % of the cluster is composed of galaxies. For the Train Wreck Cluster, if the Jee et al. data are used, 25.7 % of the cluster is composed of galaxies. The baryon matter in the galaxies and the enhanced strength of gravitation in MOG shift the lensing peaks, making them offset from the gas. The work demonstrates that this generalized gravitational theory can explain merging cluster dynamics without dark matter.

Publisher

MDPI AG

Subject

Astronomy and Astrophysics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Images of Kerr-MOG black holes surrounded by geometrically thick magnetized equilibrium tori;Journal of Cosmology and Astroparticle Physics;2024-09-01

2. Wide binaries and modified gravity (MOG);Journal of Cosmology and Astroparticle Physics;2024-05-01

3. Scalar–tensor–vector–gravity and NGC-1277;Monthly Notices of the Royal Astronomical Society;2023-11-03

4. Gravitational potential and galaxy rotation curves in multi-fractional spacetimes;Journal of High Energy Physics;2022-08

5. Unified dark sectors in scalar-torsion theories of gravity;Physical Review D;2022-07-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3