Rotating Disk Galaxies without Dark Matter Based on Scientific Reasoning

Author:

Feng James Q.ORCID

Abstract

The most cited evidence for (non-baryonic) dark matter has been an apparent lack of visible mass to gravitationally support the observed orbital velocity of matter in rotating disk galaxies, yet measurement of the mass of celestial objects cannot be straightforward, requiring theories derived from the known physical laws along with some empirically established semi-quantitative relationship. The most reliable means for determining the mass distribution in rotating disk galaxies is to solve a force balance equation according to Newton’s laws from measured rotation curves, similar to calculating the Sun’s mass from the Earth’s orbital velocity. Another common method to estimate galactic mass distribution is to convert measured brightness from surface photometry based on empirically established mass-to-light ratio. For convenience, most astronomers commonly assumed a constant mass-to-light ratio for estimation of the so-called “luminous” or “visible” mass, which would not likely be accurate. The mass determined from a rotation curve typically exhibits an exponential-like decline with galactrocentric distance, qualitatively consistent with observed surface brightness but often with a larger disk radial scale length. This fact scientifically suggests variable mass-to-light ratio of baryonic matter in galaxies without the need for dark matter.

Publisher

MDPI AG

Subject

Astronomy and Astrophysics

Reference50 articles.

1. Galactic Dynamics;Binney,2008

2. Philosophiae Naturalis Principia Mathematica;Newton,1687

3. Existence and Nature of Dark Matter in the Universe

4. Masses and Mass-To-Light Ratios of Galaxies

5. Dark matter in spiral galaxies;Van Albada;Philos. Trans. R. Soc. Lond.,1986

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3