What Drives the Ionized Gas Outflows in Radio-Quiet AGN?

Author:

Singha Mainak1234ORCID,O’Dea Christopher P.1ORCID,Baum Stefi A.1ORCID

Affiliation:

1. Department of Physics & Astronomy, University of Manitoba, 30A Sifton Road, Winnipeg, MB R3T 2N2, Canada

2. Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

3. Southeastern Universities Research Association, 1201 New York Ave. NW, Suite 430, Washington, DC 20005, USA

4. Center for Research and Exploration in Space Science and Technology, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

Abstract

We review the mechanisms driving the ionized gas outflows in radio-quiet (RQ) AGN. Although it constitutes ∼90% of the AGN population, what drives these outflows in these AGNs remains an open question. High-resolution imaging and integral field unit (IFU) observation is key to spatially resolving these outflows, whereas radio observations are important to comprehend the underlying radiative processes. Radio interferometric observations have detected linear, collimated structures on the hundreds of pc scale in RQ AGN, which may be very similar to the extended radio jets in powerful galaxies. Proper motions measured in some objects are sub-relativistic. Other processes, such as synchrotron radiation from shock-accelerated gas around the outflows could give rise to radio emissions as well. Near the launching region, these outflows may be driven by the thermal energy of the accretion disk and exhibit free–free emission. IFU observations on the other hand have detected evidence of both winds and jets and the outflows driven by them in radio-quiet AGN. Some examples include nearby AGN such as Mrk 1044 and HE 1353-1917. An IFU study of nearby (z <0.06) RQ AGN has found that these outflows may be related to their radio properties on <100 pc scale, rather than their accretion properties. Recent JWST observations of RQ AGN XID 2028 have revealed that radio jets and wind could inflate bubbles, create cavities, and trigger star formation. Future high-resolution multi-wavelength observations and numerical simulations taking account of both jets and winds are hence essential to understand the complex interaction between radio-quiet AGN and the host from sub-pc to kpc scales.

Funder

Natural Sciences and Engineering Research Council (NSERC) of Canada

Publisher

MDPI AG

Subject

Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3