Abstract
Low- and intermediate-mass stars evolve into asymptotic giant branch (AGB) stars near the end of their lives, losing mass through slow and massive winds. The ejected material creates a chemically-rich expanding envelope around the star, namely the circumstellar envelope (CSE). Investigating the anisotropy of the mass-loss phenomenon on the AGB is crucial in gaining a better understanding of the shaping of the CSE during the transition from AGB star to planetary nebula (PN). We investigate possible signs of deviation from spherical symmetry in the CO-emitting CSEs of 70 AGB stars by analysing their emission maps in CO J=2−1 and 3−2 observed with the Atacama Compact Array, as part of the DEATHSTAR project. We find that about one third of the sources are likely aspherical, as they exhibit large-scale asymmetries that are unlikely to have been created by a smooth wind. Further high-resolution observations would be necessary to investigate the nature of, and the physical processes behind, these asymmetrical structures.
Funder
European Research Council
Subject
Astronomy and Astrophysics