Combining LOFAR and Apertif Data for Understanding the Life Cycle of Radio Galaxies

Author:

Morganti RaffaellaORCID,Jurlin NikaORCID,Oosterloo TomORCID,Brienza Marisa,Orrú Emanuela,Kutkin AlexanderORCID,Prandoni Isabella,Adams Elizabeth A. K.ORCID,Dénes HelgaORCID,Hess Kelley M.ORCID,Shulevski Aleksandar,van der Hulst ThijsORCID,Ziemke Jacob

Abstract

Active galactic nuclei (AGN) at the centres of galaxies can cycle between periods of activity and of quiescence. Characterising the duty-cycle of AGN is crucial for understanding their impact on the evolution of the host galaxy. For radio AGN, their evolutionary stage can be identified from a combination of morphological and spectral properties. We summarise the results we have obtained in the last few years by studying radio galaxies in various crucial phases of their lives, such as remnant and restarted sources. We used morphological information derived from LOw Frequency ARray (LOFAR) images at 150 MHz, combined with resolved spectral indices maps, obtained using recently released images at 1400 MHz from the APERture Tile In Focus (Apertif) phased-array feed system installed on the Westerbork Synthesis Radio Telescope. Our study, limited so far to the Lockman Hole region, has identified radio galaxies in the dying and restarted phases. We found large varieties in their properties, relevant for understanding their evolutionary stage. We started by quantifying their occurrences, the duration of the ‘on’ (active) and ‘off’ (dying) phase, and we compared the results with models of the evolution of radio galaxies. In addition to these extreme phases, the resolved spectral index images can also reveal interesting secrets about the evolution of apparently normal radio galaxies. The spectral information can be connected with, and used to improve, the Fanaroff–Riley classification, and we present one example of this, illustrating what the combination of the LOFAR and Apertif surveys now allow us to do routinely.

Funder

European Research Council

Publisher

MDPI AG

Subject

Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3