Accretion Flow Morphology in Numerical Simulations of Black Holes from the ngEHT Model Library: The Impact of Radiation Physics

Author:

Chatterjee Koushik12ORCID,Chael Andrew3,Tiede Paul12,Mizuno Yosuke456,Emami Razieh2,Fromm Christian678,Ricarte Angelo12ORCID,Blackburn Lindy12,Roelofs Freek12ORCID,Johnson Michael D.12ORCID,Doeleman Sheperd S.12,Arras Philipp910,Fuentes Antonio11,Knollmüller Jakob1012ORCID,Kosogorov Nikita1314ORCID,Lindahl Greg2ORCID,Müller Hendrik8,Patel Nimesh2,Raymond Alexander12,Traianou Efthalia11,Vega Justin215

Affiliation:

1. Black Hole Initiative, Harvard University, 20 Garden Street, Cambridge, MA 02138, USA

2. Center for Astrophysics, Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA

3. Princeton Gravity Initiative, Princeton University, Jadwin Hall, Princeton, NJ 08544, USA

4. Tsung-Dao Lee Institute, Shanghai Jiao-Tong University, 520 Shengrong Road, Shanghai 201210, China

5. School of Physics & Astronomy, Shanghai Jiao-Tong University, 800 Dongchuan Road, Shanghai 200240, China

6. Institut für Theoretische Physik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, D-60438 Frankfurt am Main, Germany

7. Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Emil-Fischer-Str. 31, D-97074 Würzburg, Germany

8. Max–Planck–Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany

9. Technical University Munich (TUM), Boltzmannstr. 3, 85748 Garching, Germany

10. Max–Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, 85748 Garching, Germany

11. Instituto de Astrofísica de Andalucía-CSIC, Glorieta de la Astronomía s/n, E-18008 Granada, Spain

12. Excellence Cluster ORIGINS, Boltzmannstr. 2, 85748 Garching, Germany

13. Moscow Institute of Physics and Technology, Institutsky per. 9, Dolgoprudny 141700, Russia

14. Lebedev Physical Institute of the Russian Academy of Sciences, Leninsky Prospekt 53, Moscow 119991, Russia

15. Department of Physics, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA

Abstract

In the past few years, the Event Horizon Telescope (EHT) has provided the first-ever event horizon-scale images of the supermassive black holes (BHs) M87* and Sagittarius A* (Sgr A*). The next-generation EHT project is an extension of the EHT array that promises larger angular resolution and higher sensitivity to the dim, extended flux around the central ring-like structure, possibly connecting the accretion flow and the jet. The ngEHT Analysis Challenges aim to understand the science extractability from synthetic images and movies to inform the ngEHT array design and analysis algorithm development. In this work, we compare the accretion flow structure and dynamics in numerical fluid simulations that specifically target M87* and Sgr A*, and were used to construct the source models in the challenge set. We consider (1) a steady-state axisymmetric radiatively inefficient accretion flow model with a time-dependent shearing hotspot, (2) two time-dependent single fluid general relativistic magnetohydrodynamic (GRMHD) simulations from the H-AMR code, (3) a two-temperature GRMHD simulation from the BHAC code, and (4) a two-temperature radiative GRMHD simulation from the KORAL code. We find that the different models exhibit remarkably similar temporal and spatial properties, except for the electron temperature, since radiative losses substantially cool down electrons near the BH and the jet sheath, signaling the importance of radiative cooling even for slowly accreting BHs such as M87*. We restrict ourselves to standard torus accretion flows, and leave larger explorations of alternate accretion models to future work.

Funder

National Science Foundation

Gordon and Betty Moore Foundation

John Templeton Foundation

Deutsche Forschungsgemeinschaft

ERC

Institute for Theory and Computation at the Center for Astrophysics

DFG

National Natural Science Foundation of China

International Max Planck Research School

Shanghai pilot program of international scientists for basic research

Publisher

MDPI AG

Subject

Astronomy and Astrophysics

Reference120 articles.

1. Akiyama, K. et al. [Event Horizon Telescope Collaboration]. (2019). First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett., 875, L1.

2. Akiyama, K. et al. [Event Horizon Telescope Collaboration]. (2022). First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett., 930, L12.

3. Doeleman, S., Blackburn, L., Dexter, J., Gomez, J.L., Johnson, M.D., Palumbo, D.C., Weintroub, J., Farah, J.R., Fish, V., and Loinard, L. (2022, November 22). Studying Black Holes on Horizon Scales with VLBI Ground Arrays. Bulletin of the AAS, 2019, Volume 51. Available online: https://baas.aas.org/pub/2020n7i256.

4. Roelofs, F., Blackburn, L., Lindahl, G., Doeleman, S.S., Johnson, M.D., Arras, P., Chatterjee, K., Emami, R., Fromm, C., and Fuentes, A. (2022). The ngEHT Analysis Challenges. Galaxies, 11.

5. Evaluation of New Submillimeter VLBI Sites for the Event Horizon Telescope;Raymond;Astrophys. J. Suppl. Ser.,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3