Gravitational-Wave Instabilities in Rotating Compact Stars

Author:

Bratton Eric L.ORCID,Lin ZikunORCID,Weber FridolinORCID,Orsaria Milva G.ORCID,Ranea-Sandoval Ignacio F.ORCID,Saavedra Nathaniel

Abstract

It is generally accepted that the limit on the stable rotation of neutron stars is set by gravitational-radiation reaction (GRR) driven instabilities, which cause the stars to emit gravitational waves that carry angular momentum away from them. The instability modes are moderated by the shear viscosity and the bulk viscosity of neutron star matter. Among the GRR instabilities, the f-mode instability plays a historically predominant role. In this work, we determine the instability periods of this mode for three different relativistic models for the nuclear equation of state (EoS) named DD2, ACB4, and GM1L. The ACB4 model for the EoS accounts for a strong first-order phase transition that predicts a new branch of compact objects known as mass-twin stars. DD2 and GM1L are relativistic mean field (RMF) models that describe the meson-baryon coupling constants to be dependent on the local baryon number density. Our results show that the f-mode instability associated with m=2 sets the limit of stable rotation for cold neutron stars (T≲1010 K) with masses between 1M⊙ and 2M⊙. This mode is excited at rotation periods between 1 and 1.4 ms (∼20% to ∼40% higher than the Kepler periods of these stars). For cold hypothetical mass-twin compact stars with masses between 1.96M⊙ and 2.10M⊙, the m=2 instability sets in at rotational stellar periods between 0.8 and 1 millisecond (i.e., ∼25% to ∼30% above the Kepler period).

Funder

National Science Foundation

National University of La Plata

Publisher

MDPI AG

Subject

Astronomy and Astrophysics

Reference86 articles.

1. Theory of core-collapse supernovae

2. Neutron Stars and Pulsars;Becker,2009

3. Phases of Dense Matter in Compact Stars;Blaschke,2018

4. Discovery of a pulsar in a binary system

5. The Relativistic Binary Pulsar B1913+16: Thirty Years of Observations and Analysis;Weisberg,2005

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3