Planetary Nebulae Shaped by Common Envelope Evolution

Author:

Frank Adam,Chen Zhuo,Reichardt Thomas,De Marco Orsola,Blackman Eric,Nordhaus Jason

Abstract

The morphologies of planetary nebula have long been believed to be due to wind shaping processes in which a “fast wind” from the central star impacts a previously ejected envelope. It is assumed that asymmetries existing in the “slow wind” envelope would lead to inertial confinement, shaping the resulting interacting wind flow. We present new results demonstrating the effectiveness of Common Envelope Evolution (CEE) at producing aspherical envelopes which, when impinged upon by a spherical fast stellar wind, produce highly bipolar, jet-like outflows. We have run two simple cases using the output of a single PHANTOM SPH CEE simulation. Our work uses the Adaptive Mesh Refinement code AstroBEAR to track the interaction of the fast wind and CEE ejecta allows us to follow the morphological evolution of the outflow lobes at high resolution in 3-D. Our two models bracket low and high momentum output fast winds. We find the interaction leads to highly collimated bipolar outflows. In addition, the bipolar morphology depends on the fast wind momentum injection rate. With this dependence comes the initiation of significant symmetry breaking between the top and bottom bipolar lobes. Our simulations, though simplified, confirm the long-standing belief that CEE can plan a major role in PPN and PN shaping. These simulations are intended as an initial exploration of the post-CE/PPN flow patterns that can be expected from central source outflows and CE ejecta.

Publisher

MDPI AG

Subject

Astronomy and Astrophysics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3