The Autonomous Parvovirus Minute Virus of Mice Localizes to Cellular Sites of DNA Damage Using ATR Signaling

Author:

Larsen Clairine I. S.123,Majumder Kinjal1234ORCID

Affiliation:

1. Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA

2. Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA

3. McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA

4. University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA

Abstract

Minute Virus of Mice (MVM) is an autonomous parvovirus of the Parvoviridae family that replicates in mouse cells and transformed human cells. MVM genomes localize to cellular sites of DNA damage with the help of their essential non-structural phosphoprotein NS1 to establish viral replication centers. MVM replication induces a cellular DNA damage response that is mediated by signaling through the ATM kinase pathway, while inhibiting induction of the ATR kinase signaling pathway. However, the cellular signals regulating virus localization to cellular DNA damage response sites has remained unknown. Using chemical inhibitors to DNA damage response proteins, we have discovered that NS1 localization to cellular DDR sites is independent of ATM or DNA-PK signaling but is dependent on ATR signaling. Pulsing cells with an ATR inhibitor after S-phase entry leads to attenuated MVM replication. These observations suggest that the initial localization of MVM to cellular DDR sites depends on ATR signaling before it is inactivated by vigorous virus replication.

Funder

Independence Award

Wisconsin Partnership Program’s New Investigator Award

University of Wisconsin Carbone Cancer Center Flow Cytometry Laboratory

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3