Abstract
Cycling is an increasingly popular mode of transport as part of the response to air pollution, urban congestion, and public health issues. The emergence of bike sharing programs and electric bicycles have also brought about notable changes in cycling characteristics, especially cycling speed. In order to provide a better basis for bicycle-related traffic simulations and theoretical derivations, the study aimed to seek the best distribution for bicycle riding speed considering cyclist characteristics, vehicle type, and track attributes. K-means clustering was performed on speed subcategories while selecting the optimal number of clustering using L method. Then, 15 common models were fitted to the grouped speed data and Kolmogorov–Smirnov test, Akaike information criterion, and Bayesian information criterion were applied to determine the best-fit distribution. The following results were acquired: (1) bicycle speed sub-clusters generated by the combinations of bicycle type, bicycle lateral position, gender, age, and lane width were grouped into three clusters; (2) Among the common distribution, generalized extreme value, gamma and lognormal were the top three models to fit the three clusters of speed dataset; and (3) integrating stability and overall performance, the generalized extreme value was the best-fit distribution of bicycle speed.
Funder
National Key R&D Program of China
Natural Science Foundation of Jiangsu Province
Natural Science Foundation of Zhejiang Province
Natural Science Foundation of Guangxi Province
National Key Research and Development Program of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献