Abstract
Autonomous electric buses (AEB) have widely been envisioned in future public transportation systems due to their large potential to improve service quality while reducing operational costs. The requirements and specifications for AEBs, however, remain uncertain and strongly depend on the use case. To enable the identification of the optimal vehicle specifications, this paper presents a holistic design optimization framework that explores the impacts of implementing different AEB concepts in a given set of routes/network. To develop the design optimization framework, first, a multi-objective, multi-criteria objective function is formulated by identifying the attributes of bus journeys that represent overall value to the stakeholders. Simulation models are then developed and implemented to evaluate the overall performance of the vehicle concepts. A genetic algorithm is used to find the concepts with the optimal trade-off between the overall value to the stakeholders and the total cost of ownership. A case study is presented of a single bus line in Singapore. The results show an improvement in the waiting time with the use of a smaller sized AEB with a capacity of 20 passengers. However, the costs and emissions increase due to the requirement of a larger fleet and the increase in daily distance traveled compared to a 94-passenger capacity AEB.
Funder
National Research Foundation Singapore
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献