A Method for Monitoring and Forecasting the Heading and Flowering Dates of Winter Wheat Combining Satellite-Derived Green-up Dates and Accumulated Temperature

Author:

Huang XinORCID,Zhu Wenquan,Wang Xiaoying,Zhan Pei,Liu Qiufeng,Li Xueying,Sun Lixin

Abstract

Heading and flowering are two key phenological stages in the growth process of winter wheat. It is of great significance for agricultural management and scientific research to accurately monitor and forecast the heading and flowering dates of winter wheat. However, the monitoring accuracy of existing methods based on remote sensing needs to be improved, and these methods cannot realize forecasting in advance. This study proposed an accumulated temperature method (ATM) for monitoring and forecasting the heading and flowering dates of winter wheat from the perspective of thermal requirements for crop growth. The ATM method consists of three key procedures: (1) extracting the green-up date of winter wheat as the starting point of temperature accumulation with the dynamic threshold method from remotely sensed vegetation index (VI) time-series data, (2) calculating the accumulated temperature and determining the thermal requirements from the green-up date to the heading date or the flowering date based on phenology observation samples, and (3) combining the satellite-derived green-up date, daily temperature data, and thermal requirements to monitor and forecast the heading date and flowering date of winter wheat. When applying the ATM method to winter wheat in the North China Plain during 2017–2019, the root mean square error (RMSE) for the estimated heading date was between 4.76 and 6.13 d and the RMSE for the estimated flowering date was between 5.30 and 6.41 d. By contrast, the RMSE for the heading and flowering dates estimated by the widely used maximum vegetation index method was approximately 10 d. Furthermore, the forecasting accuracy of the ATM method was also high, and the RMSE was approximately 6 d. In summary, the proposed ATM method can be used to accurately monitor and forecast the heading and flowering dates of winter wheat in large spatial scales and it performs better than the existing maximum vegetation index method.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3