Estimating Crop LAI Using Spectral Feature Extraction and the Hybrid Inversion Method

Author:

Liang LiangORCID,Geng Di,Yan Juan,Qiu Siyi,Di LipingORCID,Wang Shuguo,Xu Lu,Wang Lijuan,Kang Jianrong,Li Li

Abstract

The leaf area index (LAI) is an essential indicator used in crop growth monitoring. In the study, a hybrid inversion method, which combined a physical model with a statistical method, was proposed to estimate the crop LAI. The simulated compact high-resolution imaging spectrometer (CHRIS) canopy spectral crop reflectance datasets were generated using the PROSAIL model (the coupling of PROSPECT leaf optical properties model and Scattering by Arbitrarily Inclined Leaves model) and the CHRIS band response function. Partial least squares (PLS) was then used to reduce the dimension of the simulated spectral data. Using the principal components (PCs) of PLS as the model inputs, the hybrid inversion models were built using various modeling algorithms, including the backpropagation artificial neural network (BP-ANN), least squares support vector regression (LS-SVR), and random forest regression (RFR). Finally, remote sensing mapping of the CHRIS data was achieved with the hybrid model to test the inversion accuracy of LAI estimates. The validation result yielded an accuracy of R2 = 0.939 and normalized root-mean-square error (NRMSE) = 6.474% for the PLS_RFR model, which indicated that the crops LAI could be estimated accurately by using spectral feature extraction and a hybrid inversion strategy. The results showed that the model based on principal components extracted by PLS had a good estimation accuracy and noise immunity and was the preferred method for LAI estimation. Furthermore, the comparative analysis results of various datasets showed that prior knowledge could improve the precision of the retrieved LAI, and using this information to constrain parameters (e.g., chlorophyll content or LAI), which make important contributions to the spectra, is the key to this improvement. In addition, among the PLS, BP-ANN, LS-SVR, and RFR methods, RFR was the optimal modeling algorithm in the paper, as indicated by the high R2 and low NRMSE in various datasets.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3