Performance Level Affects Full Body Kinematics and Spatiotemporal Parameters in Trail Running—A Field Study

Author:

Genitrini Matteo1ORCID,Fritz Julian2ORCID,Stöggl Thomas3,Schwameder Hermann1ORCID

Affiliation:

1. Department of Sport and Exercise Science, University of Salzburg, 5400 Hallein-Rif, Austria

2. Adidas AG, 91074 Herzogenaurach, Germany

3. Red Bull Athlete Performance Center, 5303 Thalgau, Austria

Abstract

Trail running is an emerging discipline with few studies performed in ecological conditions. The aim of this work was to investigate if and how biomechanics differ between more proficient (MP) and less proficient (LP) trail runners. Twenty participants (10 F) were recruited for a 9.1 km trail running time trial wearing inertial sensors. The MP athletes group was composed of the fastest five men and the fastest five women. Group differences in spatiotemporal parameters and leg stiffness were tested with the Mann–Whitney U-test. Group differences in joint angles were tested with statistic parametric mapping. The finish time was 51.1 ± 6.3 min for the MP athletes and 60.0 ± 5.5 min for the LP athletes (p < 0.05). Uphill sections: The MP athletes expressed a tendency to higher speed that was not significant (p > 0.05), achieved by combining higher step frequency and higher step length. They showed a tendency to shorter contact time, lower duty factor and longer flight time that was not significant (p > 0.05) as well as significantly lower knee flexion during the stance phase (p < 0.05). Downhill sections: The MP athletes achieved significantly higher speed (p < 0.05) through higher step length only. They showed significantly higher knee and hip flexion during the swing phase as well as higher trunk rotation and shoulder flexion during the stance phase (p < 0.05). No differences were found with respect to leg stiffness in the uphill or downhill sections (p > 0.05). In the uphill sections, the results suggest lower energy absorption and more favorable net mechanical work at the knee joint for the MP athletes. In the downhill sections, the results suggest that the more efficient motion of the swing leg in the MP athletes could increase momentum in the forward direction and full body center of mass’ velocity at toe off, thus optimizing the propulsion phase.

Publisher

MDPI AG

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3