Integrated Petrophysical Evaluation and Rock Physics Modeling of Broom Creek Deep Saline Aquifer for Geological CO2 Storage

Author:

Pothana Prasad1ORCID,Ifrene Ghoulem1ORCID,Ling Kegang1

Affiliation:

1. Department of Energy and Petroleum Engineering, College of Engineering and Mines, University of North Dakota, Grand Forks, ND 58202, USA

Abstract

Fossil fuels, such as coal and hydrocarbons, are major drivers of global warming and are primarily responsible for worldwide greenhouse gas emissions, including carbon dioxide CO2. The storage of CO2 in deep saline reservoirs is acknowledged as one of the top practical and promising methods to reduce CO2 emissions and meet climate goals. The North Dakota Industrial Commission (NDIC) recently approved the fourth Class VI permit for a carbon capture and storage project in the Williston basin of North Dakota for the geological CO2 storage in the Broom Creek formation. The current research aimed to conduct a comprehensive petrophysical characterization and rock physics modeling of the Broom Creek deep saline reservoir to unravel the mineralogical distribution and to understand the variations in petrophysical and elastic properties across the formation. This study utilized geophysical well logs, routine core analysis, and advanced core analysis to evaluate the Broom Creek formation. Multimineral petrophysical analysis calibrated with X-ray diffraction results reveals that this formation primarily comprises highly porous clean sandstone intervals with low-porosity interspersed with dolomite, anhydrite, and silt/clay layers. The formation exhibits varying porosities up to 0.3 and Klinkenberg air permeabilities up to ∼2600 mD. The formation water resistivity using Archie’s equation is approximately 0.055 ohm-m at 150 °F, corresponding to around 63,000 ppm NaCl salinity, which is consistent with prior data. The pore throat distribution in the samples from clean sandstone intervals is primarily situated in the macro-mega scales. However, the presence of anhydrite and dolomite impedes both porosity and pore throat sizes. The accurate prediction of effective elastic properties was achieved by developing a rock physics template. Dry rock moduli were modeled using Hill’s average, while Berryman’s self-consistent scheme was employed for modeling saturated moduli.

Publisher

MDPI AG

Reference53 articles.

1. (2023, December 20). Causes and Effects of Climate Change|United Nations. Available online: https://www.un.org/en/climatechange/science/causes-effects-climate-change.

2. Evaluating the coal rebound effect in energy intensive industries of China;Wei;Energy,2020

3. U.S. Global Change Research Program (2017). Climate Science Special Report: Fourth National Climate Assessment, Technical Report.

4. Masson-Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., Shukla, P., Pirani, A., Moufouma-Okia, W., Péan, C., and Pidcock, R. (2018). Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, Cambridge University Press.

5. (2023, December 20). Net Zero Coalition|United Nations. Available online: https://www.un.org/en/climatechange/net-zero-coalition.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3